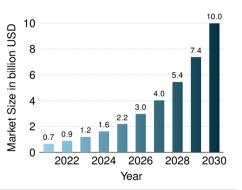
TOWARDS CERTIFIABLE AI IN AVIATION


A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets

Motivation

- Al already vital in many domains
- AI in aviation to reach \$10 billion by 2030, CAGR >35 %
- Safety in other domains often tread lightly
- Manual inspection still essential, requires tooling

- AI will severely impact future aviation
- Safety is paramount

EASA Roadmap for Safe AI in Aviation

Learning Assurance

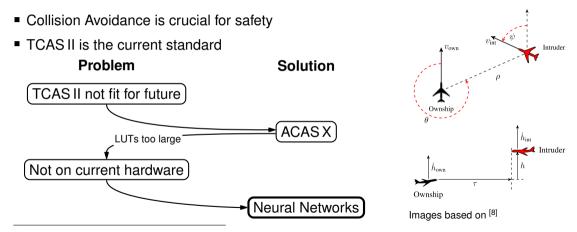
"All [...] actions [...] that error[s] [...] have been identified and corrected such that the AI/ML constituent [...] provides sufficient generalisation and robustness capabilities."

- EASA AI Roadmap and Concept Papers
- Way towards safe Artificial Intelligence in aviation
- Emphasize a clear and transparent approach

Johann Christensen, Institute for AI Safety and Security, September 29, 2024 to October 3, 2024

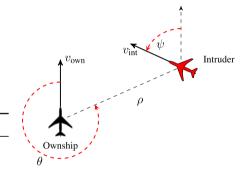
Operational Design Domain

- Developed by SAE International
- Designed for autonomous systems
- Clearly defines environmental conditions
- Enforces boundaries of operation
- Required by EASA for all AI applications


OPERATIONAL DESIGN DOMAIN Scenery Geography = Above land Dynamic Elements Intruder I... Environmental Conditions Wind = 0 kn to 40 kn

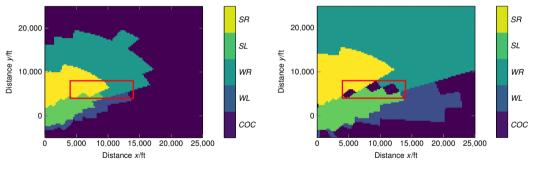
"Operating conditions under which a given driving automation system [...] is specifically designed to function, including [...] **environmental**, **geographical**, and time-of-day restrictions, and [...] **traffic** or **roadway** characteristics."

Collision Avoidance


[8] Kyle D. Julian and Mykel J. Kochenderfer. "Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems". In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE, Sept. 2019

HCAS: A Horizontal Collision Avoidance System

Advisory	Descr	iption
COC WL WR SL SR	clear weak weak strong strong	right gleft
Variable	Unit	Description
$egin{array}{c} ho \ heta \ \psi \end{array}$	ft °	Distance to intruder Bearing angle to intruder Relative heading angle
V _{own} V _{int}	ft s ⁻¹ ft s ⁻¹	Ownship's true airspeed Intruder's true airspeed
au $m{s}_{adv}$	s _	Time to closest point of approach Previous advisory


Johann Christensen, Institute for Al Safety and Security, September 29, 2024 to October 3, 2024

Ground Truth and Learned Neural Networks

Ground truth data^[6]

HCAS with $\psi = -1^{\circ}$, $\tau = 5$ s, and $s_{adv} = COC$.

Neural network^[8]

[6] RTCA, Inc. DO-386 Volume 1 & 2. Tech. rep. Washington, DC, USA: GlobalSpec, Dec. 17, 2020

[8] Kyle D. Julian and Mykel J. Kochenderfer. "Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems". In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE, Sept. 2019

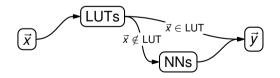
Johann Christensen, Institute for AI Safety and Security, September 29, 2024 to October 3, 2024

SafetyNet

- Combination of Neural Networks and Lookup Tables
- Lookup Tables save correction data

Training

- 1. Train Neural Network
- 2. Save correction data in Lookup Table


Inference

8

- 1. Query Lookup Tables
- 2. If input vector not in Lookup Table, infer Neural Networks
- 3. Return correct output

Johann Christensen, Institute for Al Safety and Security, September 29, 2024 to October 3, 2024

Datatype	Size	Precision
Lookup Table	large	100 %
Neural Network	small	\leq 100 %
SafetyNet	small	100 %

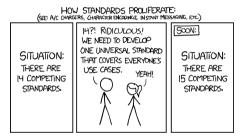
Feasibility of Calculation

- 100 % assurance only via brute-force calculation
- Using double/f64 precision:

$$egin{aligned} n_{ ext{input, HCAS}} &pprox (2^{64})^4 \cdot 5 &pprox 6 \cdot 10^{77} \ n_{ ext{input, VCAS}} &pprox (2^{64})^4 \cdot 9 &pprox 10^{78} \end{aligned}$$

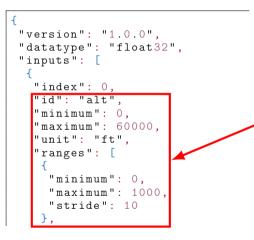
- X Not feasible
- Using discretization:

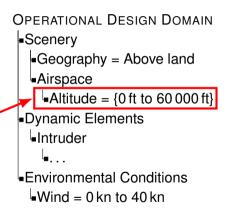
 $n_{ ext{input, HCAS, disc}} \approx 1.3 \cdot 10^{12}$ $n_{ ext{input, VCAS, disc}} \approx 8.5 \cdot 10^{11}$


✓ Feasible in < 24 h</p>

SafetyNet Manifest

- No open-source implementation available
- Reference implementation
- Use-case independent (with limitations)
- Human-readable and machine-parsable
 ⇒ JSON Schema
- JSON Schema allows for automatic validation
- Business logic to be implemented separately



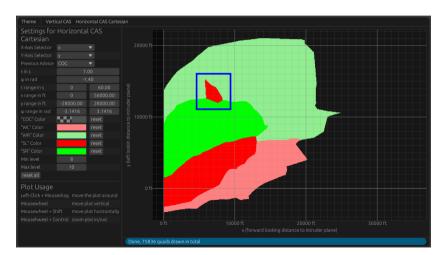

xkcd: Standards (https://xkcd.com/927/)

Connection between SafetyNet and ODD

1

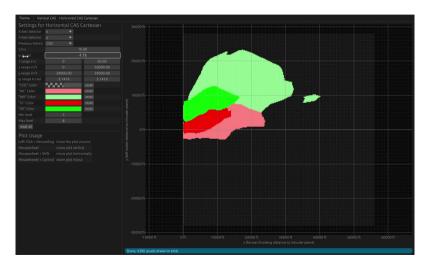
Business Logic

- Not all necessary validations and implementations can be covered by the JSON schema
- Alignment between files (e.g., data types, inputs, and outputs)
- Four categories of guidelines:
 - G General
 - M Manifest
 - L Lookup Table
 - N Neural Networks



ID	Name
G-001	Available Files
G-002	Datatype Coherence
G-003	Input Coherence
G-004	Input Coverage
G-005	Output Number
G-006	Output Type
G-007	Ensured Responsibility
G-008	Single Responsibility
G-009	Condition Limits
G-010	Wildcard Conditional
M-001	Versioning
M-002	Compatible Versioning
L-001	Correct Output
L-002	Known Format
L-003	Relayed Responsibility
N-001	Correct Output
N-002	Known Format

openCAS



openCAS Demo

Johann Christensen, Institute for Al Safety and Security, September 29, 2024 to October 3, 2024

Summary and Outlook

- SafetyNets used to detect and prevent incorrect AI behavior
- Common SafetyNet format ensures interoperability
- SafetyNet JSON Schema and business logic for verification and validation
- openCAS reduces input dimensionality, helps understanding AI behavior
- Investigate SafetyNets for other domains
- Provide a 100 % correct SafetyNet for ACAS X_U

- Manual inspection is still essential but requires proper tooling
- SafetyNets can detect and prevent incorrect AI behavior

Contact

Johann Christensen German Aerospace Center (DLR) Institute for Al Safety & Security Rathausaliee 12 | 3757 Sankt Augustin | Germany johann.christensen@dlr.de

A

References

- [1] Precedence Research. Artificial Intelligence in Aviation Market Size, Share, and Trends 2024 to 2034. Research rep. 1748. Precedence Research, May 2022
- [2] European Union Aviation Safety Agency (EASA). Artificial Intelligence Roadmap 2.0. Tech. rep. Version 2.0. Postfach 10 12 53, 50452 Cologne, Germany: European Union Aviation Safety Agency (EASA), May 2023
- [3] European Union Aviation Safety Agency (EASA). EASA Concept Paper: Guidance for Level 1 & 2 Machine Learning Applications. Tech. rep. Version Issue 02. Postfach 10 12 53, 50452 Cologne, Germany: European Union Aviation Safety Agency (EASA), Apr. 19, 2024
- [4] RTCA, Inc. DO-185B. Tech. rep. Washington, DC, USA: GlobalSpec, June 19, 2008
- [5] RTCA, Inc. DO-385. Tech. rep. Washington, DC, USA: GlobalSpec, Oct. 2, 2018
- [6] RTCA, Inc. DO-386 Volume 1 & 2. Tech. rep. Washington, DC, USA: GlobalSpec, Dec. 17, 2020
- [7] Kyle D. Julian et al. "Policy compression for aircraft collision avoidance systems". In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE, Sept. 2016
- [8] Kyle D. Julian and Mykel J. Kochenderfer. "Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems". In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE, Sept. 2019

Imprint

Topic:

Towards Certifiable AI in Aviation

A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets

- Date: September 29, 2024 to October 3, 2024
- Author: Johann Christensen
- Institute: Institute for AI Safety and Security
- Credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated